当前位置: 数据库 > Mysql > MySQL 对于千万级的大表要怎么优化?【+回表,覆盖】

MySQL 对于千万级的大表要怎么优化?【+回表,覆盖】

2021-08-31 分类:Mysql 作者:admin 阅读(27)

很多人第一反应是各种切分;我给的顺序是:
第一优化你的sql和索引;

第二加缓存,memcached,redis;

第三以上都做了后,还是慢,就做主从复制或主主复制,读写分离,可以在应用层做,效率高,也可以用三方工具,第三方工具推荐360的atlas,其它的要么效率不高,要么没人维护;

第四如果以上都做了还是慢,不要想着去做切分,mysql自带分区表,先试试这个,对你的应用是透明的,无需更改代码,但是sql语句是需要针对分区表做优化的,sql条件中要带上分区条件的列,从而使查询定位到少量的分区上,否则就会扫描全部分区,另外分区表还有一些坑,在这里就不多说了;

第五如果以上都做了,那就先做垂直拆分,其实就是根据你模块的耦合度,将一个大的系统分为多个小的系统,也就是分布式系统;

第六才是水平切分,针对数据量大的表,这一步最麻烦,最能考验技术水平,要选择一个合理的sharding key,为了有好的查询效率,表结构也要改动,做一定的冗余,应用也要改,sql中尽量带sharding key,将数据定位到限定的表上去查,而不是扫描全部的表;

mysql数据库一般都是按照这个步骤去演化的,成本也是由低到高;

有人也许要说第一步优化sql和索引这还用说吗?的确,大家都知道,但是很多情况下,这一步做的并不到位,甚至有的只做了根据sql去建索引,根本没对sql优化(中枪了没?),除了最简单的增删改查外,想实现一个查询,可以写出很多种查询语句,不同的语句,根据你选择的引擎、表中数据的分布情况、索引情况、数据库优化策略、查询中的锁策略等因素,最终查询的效率相差很大;优化要从整体去考虑,有时你优化一条语句后,其它查询反而效率被降低了,所以要取一个平衡点;即使精通mysql的话,除了纯技术面优化,还要根据业务面去优化sql语句,这样才能达到最优效果;你敢说你的sql和索引已经是最优了吗?

再说一下不同引擎的优化,myisam读的效果好,写的效率差,这和它数据存储格式,索引的指针和锁的策略有关的,它的数据是顺序存储的(innodb数据存储方式是聚簇索引)他的索引btree上的节点是一个指向数据物理位置的指针,所以查找起来很快,(innodb索引节点存的则是数据的主键,所以需要根据主键二次查找);myisam锁是表锁,只有读读之间是并发的,写写之间和读写之间(读和插入之间是可以并发的,去设置concurrent_insert参数,定期执行表优化操作,更新操作就没有办法了)是串行的,所以写起来慢,并且默认的写优先级比读优先级高,高到写操作来了后,可以马上插入到读操作前面去,如果批量写,会导致读请求饿死,所以要设置读写优先级或设置多少写操作后执行读操作的策略;myisam不要使用查询时间太长的sql,如果策略使用不当,也会导致写饿死,所以尽量去拆分查询效率低的sql,

innodb一般都是行锁,这个一般指的是sql用到索引的时候,行锁是加在索引上的,不是加在数据记录上的,如果sql没有用到索引,仍然会锁定表,mysql的读写之间是可以并发的,普通的select是不需要锁的,当查询的记录遇到锁时,用的是一致性的非锁定快照读,也就是根据数据库隔离级别策略,会去读被锁定行的快照,其它更新或加锁读语句用的是当前读,读取原始行;因为普通读与写不冲突,所以innodb不会出现读写饿死的情况,又因为在使用索引的时候用的是行锁,锁的粒度小,竞争相同锁的情况就少,就增加了并发处理,所以并发读写的效率还是很优秀的,问题在于索引查询后的根据主键的二次查找导致效率低;

ps:很奇怪,为什innodb的索引叶子节点存的是主键而不是像mysism一样存数据的物理地址指针吗?如果存的是物理地址指针不就不需要二次查找了吗,这也是我开始的疑惑,根据mysism和innodb数据存储方式的差异去想,你就会明白了,我就不费口舌了!

所以innodb为了避免二次查找可以使用索引覆盖技术,无法使用索引覆盖的,再延伸一下就是基于索引覆盖实现延迟关联;不知道什么是索引覆盖的,建议你无论如何都要弄清楚它是怎么回事!

尽你所能去优化你的sql吧!说它成本低,却又是一项费时费力的活,需要在技术与业务都熟悉的情况下,用心去优化才能做到最优,优化后的效果也是立竿见影的!

来源:https://www.zhihu.com/question/19719997

索引覆盖与回表

select id,name where name='shenjian'

select id,name,sex* where name='shenjian'*

多查询了一个属性,为何检索过程完全不同?

什么是回表查询?

什么是索引覆盖?

如何实现索引覆盖?

哪些场景,可以利用索引覆盖来优化SQL?

这些,这是今天要分享的内容。

画外音:本文试验基于MySQL5.6-InnoDB。

一、什么是回表查询?

这先要从InnoDB的索引实现说起,InnoDB有两大类索引:

  • 聚集索引(clustered index)
  • 普通索引(secondary index)

InnoDB聚集索引和普通索引有什么差异?

InnoDB聚集索引的叶子节点存储行记录,因此, InnoDB必须要有,且只有一个聚集索引:

(1)如果表定义了PK,则PK就是聚集索引;

(2)如果表没有定义PK,则第一个not NULL unique列是聚集索引;

(3)否则,InnoDB会创建一个隐藏的row-id作为聚集索引;

画外音:所以PK查询非常快,直接定位行记录。

InnoDB普通索引的叶子节点存储主键值。

画外音:注意,不是存储行记录头指针,MyISAM的索引叶子节点存储记录指针。

举个栗子,不妨设有表:

两个B+树索引分别如上图:

(1)id为PK,聚集索引,叶子节点存储行记录;

(2)name为KEY,普通索引,叶子节点存储PK值,即id;

既然从普通索引无法直接定位行记录,那普通索引的查询过程是怎么样的呢?

通常情况下,需要扫码两遍索引树。

例如:

select * from t where name='lisi';

是如何执行的呢?

粉红色路径,需要扫码两遍索引树:

(1)先通过普通索引定位到主键值id=5;

(2)在通过聚集索引定位到行记录;

这就是所谓的回表查询先定位主键值,再定位行记录,它的性能较扫一遍索引树更低。

二、什么是索引覆盖****(Covering index)****?

额,楼主并没有在MySQL的官网找到这个概念。

画外音:治学严谨吧?

借用一下SQL-Server官网的说法。

image

MySQL官网,类似的说法出现在explain查询计划优化章节,即explain的输出结果Extra字段为Using index时,能够触发索引覆盖。

image

不管是SQL-Server官网,还是MySQL官网,都表达了:只需要在一棵索引树上就能获取SQL所需的所有列数据,无需回表,速度更快。

三、如何实现索引覆盖?

常见的方法是:将被查询的字段,建立到联合索引里去。

仍是《迅猛定位低效SQL?》中的例子:

create table user (

id int primary key,

name varchar(20),

sex varchar(5),

index(name)

)engine=innodb;

第一个SQL语句:

select id,name from user where name='shenjian';

能够命中name索引,索引叶子节点存储了主键id,通过name的索引树即可获取id和name,无需回表,符合索引覆盖,效率较高。

画外音,Extra:Using index

第二个SQL语句:

select id,name,sex* from user where name='shenjian';*

能够命中name索引,索引叶子节点存储了主键id,但sex字段必须回表查询才能获取到,不符合索引覆盖,需要再次通过id值扫码聚集索引获取sex字段,效率会降低。

画外音,Extra:Using index condition

如果把(name)单列索引升级为联合索引(name, sex)就不同了。

create table user (

id int primary key,

name varchar(20),

sex varchar(5),

index(name, sex)

)engine=innodb;

可以看到:

select id,name ... where name='shenjian';

select id,name,sex* ... where name='shenjian';*

都能够命中索引覆盖,无需回表。

画外音,Extra:Using index

四、哪些场景可以利用索引覆盖来优化SQL?

场景1:全表count查询优化

原表为:

user(PK id, name, sex);

直接:

select count(name) from user;

不能利用索引覆盖。

添加索引:

alter table user add key(name);

就能够利用索引覆盖提效。

场景2:列查询回表优化

select id,name,sex ... where name='shenjian';

这个例子不再赘述,将单列索引(name)升级为联合索引(name, sex),即可避免回表。

场景3:分页查询

select id,name,sex ... order by name limit 500,100;

将单列索引(name)升级为联合索引(name, sex),也可以避免回表。

InnoDB聚集索引普通索引回表索引覆盖,希望这1分钟大家有收获。

链接:https://www.jianshu.com/p/8991cbca3854

「三年博客,如果觉得我的文章对您有用,请帮助本站成长」

赞(0) 打赏

支付宝
微信
0

支付宝
微信
标签:

上一篇:

下一篇:

你可能感兴趣

共有 0 - MySQL 对于千万级的大表要怎么优化?【+回表,覆盖】

博客简介

精彩评论

  • admin(6年前 (2020-03-09))

    分别用不同厚度的筏板定义,画图后这设置筏板变截面处理。 http://f.fwxgx.co...

    评:新文章!
  • admin(6年前 (2020-03-09))

    分别用不同厚度的筏板定义,画图后这设置筏板变截面处理。 http://f.fwxgx.co...

    评:新文章!
  • admin(6年前 (2020-03-09))

    新增一个框架图! http://biji.jinli.vip/wp-content/upl...

    评:新文章!
  • 一位WordPress评论者(6年前 (2020-02-13))

    嗨,这是一条评论。 要开始审核、编辑及删除评论,请访问仪表盘的“评论”页面。 评论者头像来自...

    评:世界,您好!